GLOBAL ACADEMY OF TECHNOLOGY

(Autonomous Institution, Affiliated to VTU)

SEE MODEL QUESTION PAPER-2

First Semester B.E. Degree Examination, April - 2021

Elements of Electronics Engineering

Time: 3 hrs. Course Code: 20ELN16 Max. Marks: 100

Note: answer any Five full questions, choosing ONE full question from each module.

MODULE - 1				
	a.	Discuss the working of Full wave Bridge rectifier with circuit diagram and waveforms.	8	
1	b.	Show that efficiency 81.2 %.	8	
		A full wave rectifier has a load of $1k\Omega$. The ac voltage applied to the diode is $200V-0V-200V$.		
		If diode resistance is neglected, calculate (i) average dc current and (ii) average dc voltage.	O	
		Design a Zener voltage regulator to meet the following specifications:		
	c.	Output voltage = 5 V		
		load current = 10 mA		
		Zener wattage = 100 mW	4	
		input voltage = 10 V ±2V		
		OR		
2	a.	Discuss how Zener diode can be used for voltage regulation.	6	
	h	A full wave bridge rectifier with an input of 100 V (rms) feeds a load of 1 k Ω . V_T = 0.7 V If	7	
	b.	the diodes employed are of silicon, what is the dc voltage across the load and	,	
		determine the PIV rating of each diode.	7	
	c.	Discuss the different types of Diode approximations.		
MODULE - 2				
	a.	Explain how transistor can be used as a Switch.		
	h	A voltage divider bias circuit has V_{CC} = 15V, R_c = 2.7k Ω , R_E = 2.2k Ω , R_1 = 22k Ω , R_2 = 12k Ω and	7	
	b.	h_{fe} = 50. Calculate V_E , V_c , I_c and V_{CE} , draw the DC load line, and mark the Q-point assume	6	
3		$V_{BE} = 0.7V.$	o	
	c	Discuss working principles of Crystal Oscillator using BJT.	7	
		OR		
	a.	Explain the operation of Hartlet oscillator with circuit diagram and write the	7	
		expression for the frequency of oscillation.		
	b	Design voltage divider bias circuit to have $V_{CE} = V_E = 6V$ and $I_c = 1.5$ mA supply voltage is 24V		
4		and transistor h_{fe} = 80.	6	
4	c	Determine the operating point of a Base bias Circuit using Silicon transistor with		
		β = 100, $~R_B$ = 500k $\Omega,~R_c$ = 2.5k Ω and V_{cc} = 20V. Show the load line and Q- point.	7	
MODULE - 3				
	a.	Obtain an expression for the output voltage of an Subtractor using Op-amp	7	
5	b.	The input to the basic differentiator circuit is a sinusoidal voltage of peak value of 10	6	

UG

	,			
		mV and frequency 1.5 kHz. Find the output if R_f = 100 k Ω and C_1 = 1 μF .	7	
	c.	Obtain an expression for the output voltage of an Inverting Summer using Op-amp	,	
	C.	OR		
6	0	Design an Inverting Schmitt Trigger using Op-Amp with UTP = +4V, LTP =-4V and Vcc=18V	7	
	a.	Design an inverting scrimitt (rigger using Op-Amp with OTP = +4V, LTP =-4V and VCC=18V	/	
	b.	Explain zero crossing detector using Op-Amp and also Sketch the input and output waveforms.	7	
			6	
	c.		Ū	
		$V_0 = -[0.1V_1 + 0.5V_2 + 20V_3]$, where V_1 , V_2 and V_3 are inputs. Select $R_f = 150 \text{ k}\Omega$.		
waveforms.				
7	a.	Reduce the Boolean Expression and Implement using Universal gates Y=∑(1,2,4,7).	6	
	b.	Deduce a Full Subtractorr using Logic gates and write the truth table and logical expressions.	7	
	С	Explain the working of a JK flip-flop with logic diagram and truth table.	7	
		OR		
	а	Perform 1's and 2's Complement Subtraction for (32) ₁₀ –(46) ₁₀	6	
8	b	Implement Half adder using NAND gates.	7	
	c.	Explain the working of an SR- latch using NOR gates.	7	
9	a.	Explain the various technology generations used in Wireless Communication System.	7	
	b.	What is modulation and explain the need for modulation.	6	
	c.	A modulating signal 10 sin (2p x 102t) is used to modulate a carrier signal 20sin(2px104t)	7	
		OR		
10	a.	Explain the basic principle of cellular communication.	7	
	b.	Discuss different types of Electronic Communication.	7	
	C.	A 500 Watts, 1MHz carrier is amplitude modulated with a sinusoidal signal of 1kHz. The depth of modulation is 60%. Calculate the band width, power in the side bands and the total power transmitted.	6	